March 3, 2017

Eagle in the journals

Two recent publications by Eagle staff are worthy of note:

Automated Large-Scale Culture and Medium-Throughput Chemical Screen for Modulators of Proliferation and Viability of Human Induced Pluripotent Stem Cell–Derived Neuroepithelial-like Stem Cells

Donna McLaren et. al. (including Eagle's David Flanders)

http://jbx.sagepub.com/content/early/2012/10/03/1087057112461446

The aim of this study was to demonstrate proof-of-concept feasibility for the use of human neural stem cells (NSCs) for high-throughput screening (HTS) applications. For this study, an adherent human induced pluripotent stem (iPS) cell–derived long-term, self-renewing, neuroepithelial-like stem (lt-NES) cell line was selected as a representative NSC. Here, we describe the automated large-scale serum-free culture (“scale-up”) of human lt-NES cells on the CompacT SelecT cell culture robotic platform, followed by their subsequent automated “scale-out” into a microwell plate format. We also report a medium-throughput screen of 1000 compounds to identify modulators of neural stem cell proliferation and/or survival. The screen was performed on two independent occasions using a cell viability assay with end-point reading resulting in the identification of 24 potential hit compounds, 5 of which were found to increase the proliferation and/or survival of human lt-NES on both occasions. Follow-up studies confirmed a dose-dependent effect of one of the hit compounds, which was a Cdk-2 modulator. This approach could be further developed as part of a strategy to screen compounds to either improve the procedures for the in vitro expansion of neural stem cells or to potentially modulate endogenous neural stem cell behavior in the diseased nervous system.

BioJava: an open-source framework for bioinformatics in 2012

Andreas Prlic et. al. (including Eagle's Richard Holland)

http://www.ncbi.nlm.nih.gov/pubmed/22877863

BioJava is an open-source project for processing of biological data in the Java programming language. We have recently released a new version (3.0.5), which is a major update to the code base that greatly extends its functionality. BioJava now consists of several independent modules that provide state-of-the-art tools for protein structure comparison, pairwise and multiple sequence alignments, working with DNA and protein sequences, analysis of amino acid properties, detection of protein modifications and prediction of disordered regions in proteins as well as parsers for common file formats using a biologically meaningful data model.

Topics: Announcements